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Preface

We taught mechanics of continuous media for two decades at EPFL
(Swiss Institute of Technology in Lausanne) and we used a lot of various
exercises to illustrate the subject.

We have decided to make available these solutions in order to help as
much as possible the understanding of the lecture contents and mastering
of the concepts. The reader will note that some solutions are sometimes
simple to set up. Others are more elaborate, need longer development
and are more difficult to tackle.

We will refer to the equations of the monograph “Mechanics of Conti-
nuous Media : an Introduction” published by EPFL Press, by prefixing
their numbers with the bold character B for Book. The present book of
solutions possesses its own numbering.
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CHAPITRE 1

Cartesian tensors

Solution 1.1
Through the relations (B1.52) and (B1.15), one has

/ — . . e — . . —_—
6pq = CpiCqj0ij = CpjCqj = Opq -

Solution 1.2
By the Kronecker symbol properties, one obtains
03j0ik 0k = 611011011 + 022022022 + 033033033 =
—141+1
=3.

One can also demonstrate the relation as follows

0ij0ik0jk = 0ij0ij = 0ji = 3 .

Solution 1.3
For the first relation, one has
€ijkUiUj = €123UTUL + €231U2U3 + €312U3UL
+ €132u1u3 + €321u3U2 + €213u2u; = 0 .
For the second relation, as
0ij #0 ifi=j
Eijk =0 le:],
it follows that
6,-jeijk =0.



2 Cartesian tensors

Solution 1.4
It is asked to demonstrate the following relation
tx (uxv)=(t-v)u—(t-u)v.
By definition of vector product (B1.31), one gets
(U X V) = EprmWom -
Therefore the left hand side of (1.1) yields
(t x (u xv)); = €ijitj (EpmWVm) = €ijkEkimt; WVm -
By (B1.30), we know that
€ijkEkim = 0i10jm — Oimji -
Combining (1.2) and (B1.30), one obtains successively
EijkEkimljWVm = (8510 jm — Oim0j1)tjuivm
= 0i10jmtjwVm — dimdjitjuvm
= UilmUm — VitjU;
={t-v)u—(t-uv.

Solution 1.5
Note that

(a xb), =¢ejjra;by and (¢ x d); = epmncmdn
Then one writes

((axb) x (¢ xd)), =eri(€ijra;br) (Etmncmdn) -
Let us note that €,;; = €4, = €14. Consequently

Elri (gijkajbk) (Elmncmdn) = Elriglmneijkajbkcmdn

Using identity (B1.30), €ii€imn = OrmOin — Orndim, one obtains

Eril(gijkajbk)(glmncmdn) = (57"7715171 - 5rn5im)€ijkajbkcmdn

(1.1)

(1.2)

= Eijk6rm5inajbkcmdn - gijk(srnéimajbkcmdn

= Eijkajbchdi — aijkajbkcidr

= gjribrdiajc, — €jpibrciajdy

=(a-(bxd)c —(a-(bxce))d, .

Finally
(axb)x(exd)=(a-(bxd)c—(a-(bxc))d.
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Solution 1.6

Identity (B1.230)
Expressing it in index notation one has

0
AV (a X b) = 7(5'klakbl)
aﬂfj J
. 8bl 66%
= Ejkiak oz, + €jk1bi oz,
ob; Oay,
Ekjl0k oz, + €15k l@:cj

=—-a-(Vxb)+(Vxa)b.

Identity (B1.231)

By definition, the expression (a- V)b with index notation is written
as

_ . 9b
i_a]axj .

With the curl definition (B1.177), one has

((a-V)b)

by,
(V X b)l = (curl b)l = Ez‘jkaixj .
As a consequence,
ob
(ax(VxXb)y,= z—:mmsijkana—x]; )

With (B1.30), one has
Emni€ijk = €imnijk = 5mj5nk - 5mk5n] .

The third term of the right hand side of (B1.231) becomes

ob
(a X (V X b))m = (5mj5nk — 5mk5nj)anaik'
Ly
Oby, by,
By Oty e — 8 Oy o
J k@ al'j K ]CL ij
_ Ok Obm
k@a:m T 0w
Accordingly, one finds
a%+b%+a %—a-%—l—b %_b% =a %+b %
](91‘]' ]81‘]’ "8901 Jaxj "8902 ]axj - naxz naxZ
O(anby,
_ b)) gy,

8:@-
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Identity (B1.232)
The right hand side of (B1.232) is written as

bj% _ aj% v, Py, 00 _ Olaiby)  0(aibi)
al‘j 8:13j al'j al'j al'j 8{[}]'
The left hand side gives
d(eijrazby) d(a;by,)
gmn’LT - 5mnz£z]k87xn . (13)

By (B1.30), one has
Emni€ijk = Eimnijk = 5m]5nkz - 5mk5n] .
Relation (1.3) becomes

Oxp, 0z, Oy,
Identity (B1.233)
We successively obtain
0 ob; Oa;
b)) = iij b, —2
82Uj (a ]) “ 8.73j * ]8LU]‘

=adivb+ (Va)b.

Solution 1.7

Identity (B1.234)

One writes successively

d(Pay)
[(®a)), =€jjp——
(curl(®a)), = € oz,

d day,

— e 2 Y St

Szjkaxj ag + €ijk axj
=Vo xa+ Pcurla

=—-—axV®+ dcurla .
Identity (B1.235)

One has
8(19%
(V(®a)), = 5
- & 8a¢ a; 0P
al‘j axj

=®dVa+ax V.
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Identity (B1.236)
The j component of gradient of ® yields

0P
(V®); = 9,

Therefore

(V2(Ve), = 82;:@ (gi) = ;;j (aij;ci) = (V(V*9)), .

Thus

V2 (VO) =V (VD) .
Identity (B1.237)

The [ component of the vector corresponding to the left hand side is
such that

a 8201 82 aa
2 (. 9 ([_9a =(eip—— [ =E
(Vx (V'a)), = <E”k8xj <3xm8xm>>z <€Z]kaﬂfmaﬂfm <8xj>>l

82 8ak _ 2

Identity (B1.238)
First indexed equality

82ak 0 Jay,
(Aa), A = 3 (&Em> = (V- (Va)), -
Second equality
day,
(V xa); = Ez'jkang
B o 8ak _ 32%
(V< (V xa)) = cimig — (%kax) ik G 0

Note that by (B1.30), one has
Elmi€ijk = EilmEijk = 01j0mk — O1kOmj -
Therefore, one obtains

9%ay, 9%ay,
o = (81i6mk — O1Omi) ——
Slmzfz]kaxmaxj ( 179mk Ik ]) &L‘m@xj
82% 82(Lk

= 0j0m 0y, 0x; — OkOmy 0%y, 0x;
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and then
82 A . 82611
al’max l ox i ox i

(V x (V x a)), =

2
_ 0 <8am> 0%qy 0 (V- a) - Ad

87361 Orm ) Ox;0x; - 67@
=(V(V-a)- VQa)l .

This last relation is valid for each component of the vector function a

Aa=V(V-a)—curlcurla.

Solution 1.8
Identity (B1.239)

The ¢ component of the vector corresponding to the left hand side is

such that

oa;
(V(a-x)), = <8; z;+ aj5ij>

- <ZZJZ% +ai> = <a+ (Va)Tm>i )

Thus
V(e -x)=a+ (Va) .
Identity (B1.240)
The Laplacian is written

O*(aiz;) 0 <8(aixi)> |

- 81‘j8$]’ - 87% 8$]’

V:(a-x)

Carrying out the algebra, one has

O (daw)\ _ O (Ow o On) _ D 8+5>
al’j 8CU]‘ _81’]‘ 8xj ! Zaxj _c%:j 8a;j ! B

_ Qai | Daidwi o Oai
N awjal'j ! 8xj 8.212‘j Y G:Bj
(92&@' 8&1' aai 8204'

it 50+
al‘jaa?jx +a$]’ ]+

= (V2a)i + 2(div a); .

Thus
Vi(a -z)=2diva+x- (V2a) .

¥ = g
]633]- al'jal‘j

8@1-
+ 2@7]-5”
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Identity (B1.241)
The Laplacian is written
0?(®x;) 0 [0(Px;) o (09 ox;
2(Pp [P Vit VAN (e Wi 7/ S Bhiieill 4D i
(V ( w))z &cj&xj 8wj ( 833j ) 8xj <al‘jx * awj>
0*® 0P 0P 0*® 0P

3 751“ 75[ = 2 .
awjal'j:B + 8.7}j J + 8xj J 81‘j8$jx + 8.77@

Thus
(V2 (@), = (xV?®); + 2(V);

%
V2 (dx) = 2V + 2V?d .
Solution 1.9
One writes with (B1.52)
= (civer) - L(cjie)) =
= cikcjier - Lep =

= cigCjiLyy .
Moreover, by (B1.15)
CikCit = Oky -
One has
tr(L') = Lj;
= cikCitLi
= OprLr
= Ly,
=tr(L) .

Solution (1.10)
Identity (B1.69)
One has successively
w- LTy = u; (LT)Z.m U = Wi LmiVm = Lpiuivy, = (Lu - v)
w-LTv = u; (LT)Z.m U = Wi LimiVm = Um Lmiu; = (v - Lu) .
Identity (B1.71)

By definition of the scalar product of two tensors, one obtains

(@®b)L);; = (@ ®b)y, Lij = aibyLy; = a; (L), b = (a ® L")

ij "
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Solution 1.11

Il(L) =L11+ Lo+ L3z =trL .
I5(L) = L11Lag — La1 Lo + Laa L3 — LogLas + L11Lss — Li3L3; =
= (L11Laa + LooL3s + L11L33) — (Lo1L12 + LozL3p + Li3L31) =
1 1
= 5L+ L2 + Ls3)® — §(L%1 + L3y + L33)]
— (L21L12 + LogL3ag + LigL31) =
1
= §(L11 + Loy + L33)?

1
—iuﬁyH@2+L%+2LﬂLm+2L%LM+QLBLM):

1 1
=§WLF*§@NLD)
= S((rL) ~ (tr(LL)))

1
= 5 (Liiljj — LijLji) -

L1 Lo Ly
Ig(L) = det L21 L22 L23 = 5ijkL’ile2Lk:3 = det L .
L3y L3z Lss

Solution 1.12
With definition (B1.159), one finds
V(Ajrzjee) = AjrV (zjr)
= Ajk(kaxj + $jVIk)
= Ajk(xk&J + $]5zk)
= Azkl‘k + A]‘Z’J?j
= (Aij + Aji)xjei .

Solution 1.13

The tensor D;; is decomposed into the sum of a symmetric tensor
and of an antisymmetric tensor. One has

D;; = D+ Djj

with the relations
S S
Dij = Dji
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and
A A
DA =-Di.

Henceforth, one calculates

S A
= Djxiz; + Djjwixj .

One uses the fact that the scalar product of the antisymmetric tensor
Dé and of the symmetric tensor x;z; vanishes (cfr. example B1.7) to
obtain

— DS
Dijl‘il‘j = Dijl‘lilij .

Solution 1.14
As @ is orthogonal, relation (B1.92) gives
Qu-Qu=u-v.
By (B1.69), one has
Lu-v=u-LTv=v-Lu.
Combining these two last relations, one finds

Qu-Qu=u-Q'Qu=u-v

and therefore

QQ=1I.
Then

QTQ"QQ"=Q"IQ" =Q"Q"

one concludes

QR =1.
Multiplying left and right this equation by Q ', one writes

R'QQ ' =1Q™!

and consequently

QT:Q—I )
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Solution 1.15

The antisymmetric tensor L* has the following matrix

0 —Wws w2
[L4] = ws 0 —w
—Ww?2 w1 0

The first invariant is the sum of the diagonal elements (cf. (B1.121))
1 =0.

For I, and I3, one obtains easily

2

IQ:w%+w§—|—w3

and
Is=0.

The characteristic equation (B1.120) gives
MW +wi+wr=0

or
N4 (W + Wi+ wi))A=0.

The eigenvalues are the roots of this equation. One has

A1 =0

A2g = tiy/w? +wi + w3 .

The system (B1.111) produces the equations

and

0 — wsng +wong =0

wsni +0—wing=0.

One extracts

ny  wo
ng  ws
ny ow
ng  wg

Since the vector n is a unit vector

2 2 2
ni+ny+n3=1.
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a((2)+(3) )

Finally, one obtains

one finds

ny = wi
Ng = Wy
ng = ws .

Solution 1.16
By (B1.109) and (B1.59), one has successively

LL’)’Li = )\Z‘L’I’Li

Each term of the characteristic equation can be rewritten using the
previous relations

)\377,2‘ = Lgni

%
—Ilz\?ni = —IlLQni
[2)\2")’2,1' = IQLnZ‘
—Ig’l’l,z‘ = —IgI’I’Li .

By adding one finds consecutively
)\?’I’I,z — Il)\?nz + ILhAn; — Isn; = L3’I’Li — IlLQ’I’Li + IsyLn; — IsIn;

(N = hA? + A — I)ny = (L° = LL? + L — I 1)n; .

Thus one has
L - NI+ LL-15I1=0.

Solution 1.17
Multiplying (B1.123) by T}, one obtains
3T ' — L T*T '+ LTT '~ LIT ' =T? - LT+ LI-LT ' =0

or
T? = [T — LI + ;T .
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By (B1.139) and (B1.140), one has
L= f(T) =@l + 1T + p2(LT — LI + T™') =
= (po — w2I2)T + (o1 + ©211)T + o IsT !
Setting up
ag = po — p2ls

a1 = @1+ palq
ag = pals

one obtains relation (B1.245).

Solution 1.18

Let the matrix [A] be of the order 3 such that

ail; a2 ai3
[Al = a21 a2 a | . (1.4)
azy azz2 asg

Its determinant is the scalar given by the relation
det[A] = ai1a22a33 + a12a23a31 + a13a21a32
— (13022031 — 11023032 — 012021033

1) The product €ijr€imnaiiajmak, generates 36 non vanishing terms
(among the 81 possible) that can be grouped in six independent
components as the one above. Thus the equation

det[A] = éfijkelmnailajmakn

is the determinant of [A].

2) By definition, the inverse matrix of [A] is

_ M)
~ det[A]

(A~ (1.5)

where [M]T is the transpose of the cofactor matrix of [A] with
det[A] # 0. For matrix [A] given by (1.4) the cofactor matrix has
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the following elements
— 141 | @22 G23 _ 142 | @21 Q23
M = (-1) Mis = (—1)
asz2 33 as1p ass

143 | @21 a22 241 | @12 G13
Mz = (-1)'F Moy = (—1)*F
asy a3z azz  a33

- 242 | 411 a13 _ 243 | @11 a2
My = (—1) Moz = (—1)
asy ass asy asz

34+1| @12 ais 342 | @11 ai3
Mz = (—1)°F Msy = (—1)°F
aoo a3 a1 az3

Msz = (—1)°+? -

a1 Qg
Thus one can write
[M] =
(a22a33 - G23a32) —(a21a33 - a23a31) (a21a32 - a22a31)
—(a12a33 — a13a32)  (ar1asz —aizaz1) —(arase — a12as;)
(a12a23 — a13a22)  —(a11a23 —aizaz1) (ar1a22 — a12a21)

These elements are expressed in index notation using the permuta-
tion symbol

M;; = 5 EikIEjmnkmin -

One can verify easily that expression €€ jmn produces only four non
zero terms or two terms that appear twice. This makes the factor one
half in the last relation necessary. For example

Mis = [e123€312a21a32 + €123€321A22031
+ £132€312a31a22 + €132€321a32a21] /2

= 2(ag1a32 — axasz1)/2 .

The transpose of the cofactor matrix [M] is called the adjoint of [A].
It is expressed as

1
([M]T),;» = 5Ejki€imnkmAin - (1.6)

g2
Using (1.6) in (1.5), one obtains in index form the elements of the
inverse matrix

1

71 —_— — . .
([A] )ij = 2det[A] EjklEimnGrmAln -
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Solution 1.19

A series of algebraic manipulations leads to the result

2 _P(fg) | P(fg9)  PP(fg)
Vifg) = Bx% + (9.1‘% + (%U?,, N

_0<3(fg)>+3(0(fg)>+8(0(fg)>_
N 8{[:1 81‘1 aibz 8:132 81'3 8{[:3 N
_a (of o9\ . 0 (0f dg
—ax1<am9+fax1>+a@<ax2g+fax2>

o (of o9\
+ 83:3 <6x39+f8x3> N

_O*f . 0f 89 . Of 09 = 9%

= 027" 9z 001 T 0wy 0my T2’
o’f  of 99  Of 99 9%g

9237 " Dy 0ws | O Oy T 023

O*f Of dg | Of o9 D9,
T 9229 " Oy s T Oy 0w " 0a2)

0%f  O%f O°f 0%g 0%¢ 0%
~ (ot o) 7+ (G T b+ 01
0f D9 08 Dy ,0f By

2 e 0y 20wy 0y | 205 O

= fV3g+gVif+2Vf-Vyg.

_.I_




CHAPITRE 2

Kinematics of continuous media

Solution 2.1
With relation (B2.8), one writes
1
U(X,t) =xz— X = —§X181
and by (B2.9), one has
u(x,t) = —z1e; .

Solution 2.2
By (B2.133), one has
1 = X1+ kXo T9 = X9 3 = X3 .
Recalling the definition of the deformation gradient tensor (B2.67)

Bxi

F‘i': )
170X,

one calculates successively

1 k
F=101
0 0

= o O

the right Cauchy-Green deformation tensor

10 0 1 k 0O 1 E 0
C=FTF=| % 1 0 010 ]|=|% k241 0
0 0 1 00 1 0 0 1
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the left Cauchy-Green deformation tensor

1 k& 0 1 00 1+k%2 k 0
c=FFT'=[0 1 0 E 10 |= k10
00 1 0 0 1 0 0 1

the Green-Lagrange deformation tensor

o
™

1 1
E=3(C-I)=3

o
S
o oo

and the Euler-Almansi deformation tensor

ezi(I—c_l)
cl=FTF!
1 -k 0
F'=10 1 0
0 0 1
1 00
FT=| -k 10
0 0 1
1 ~k 0
c'=FTF1'=| -k K2+1 0
0 0 1
(0 kO
e=3 kE —k2 0
0 0 0

We detail below the computation of F~! by the adjoint and cofactors
method A
Ajj = (1) M

2|t 0
A =(-1) 0 1 =1
a0
A22_( 1) 0 1 =1
_ 6| 1R
A33_( ]') 0 1 =1
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Kinematics of continuous media

S O

o—~o = _ o

=1

010

|M| =

x — O

Solution 2.3
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As 9
L
F =
Y 0X;
one obtains with (B2.130)
m 0 0
F = 0 m 0
0 0 m

and the right Cauchy-Green deformation tensor as

m 0 0 m 0 0 m? 0 0
C=F'F=[ 0 m 0 0m 0 |=( 0 m?> 0

0 0 m 0 0 m 0 0 m?
Let us remark that C = ¢ as tensors F and FT are diagonal.

The following tensors can be easily expressed :

the Green-Lagrange deformation tensor

1 1 m? —1 0 0
15:5((1—1):5 0 m?2-1 0

the inverse of the left Cauchy-Green tensor

m=2 0 0
cl=FTF = 0 m2 0
0 0 m2

the Euler-Almansi deformation tensor

] 1 1—m2 0 0
e:§(I—C*1):5 0 1—m™2 0
0 0 1—m2

Solution 2.4

1) The trajectory is the spatial curve describing the successive positions
x of a particle X with respect to time t. One eliminates the variable
t in the relation & = x(X,t) in such a way as to obtain a system of
implicit equations linking the positions x;. Thus

2 2
Tl — X1 o — X2 _ 2 t Xl
(CL> + ( b ) = COS 27T(T 17 )

t X

.92 1

+ om( — —) =1
sin ( )
$3—_X3.
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The trajectory of a particle with given material coordinates X1, Xo, X3
is located on the plane x3 = X3. In this plane, the trajectory is an el-
lipse whose centre is at point with coordinates X1, X3, X3 and whose
principal axes are oriented in the directions e; and e, and have 2a
and 2b as respective lengths.

2) As the motion is given in the Lagrangian description, one finds the
velocity and acceleration components by taking the partial derivative
with respect to time with the X; held fixed. One finds

ory 2ra t Xi

1= b= —psenln )
nga;; X, :%ﬂbcos%r(%—%)
stza;g x; =0

Alzaa‘? X; :—4;2; cos 277(%—%)
Agzaa‘f Ix; :—ZL;?)SmQW(;—)g)
P TN

3) The deformation gradient tensor is obtained by the relation Fj; =

8"’“ . Thus one has
1+ 2% gin 2(4 — &1) 0
[F] = 226 cos 277(% — %) 10
0 0 1
In Lagrangian representation, one writes % = %Fij |x,. The ma-
trix [F] gives
‘ 4};Ta cos 2m(& —31) 0 0
[F] = 4£Tb sin 27 (4 — %) 00
0 0 0

4) Using relation (B2.179), F = LF, one has L = FF~'. As on the
one hand, det(F) = 1+ 2/%sin 277(— — 1) and on the other hand,

L
the adjoint of [F] is ertten by setting 27 (4% — %) =arg
1 0 0
adj[F] = [ 2P cosarg 1+ Z%sinarg 0 ,

0 0 1+27rT“sina7“g
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one obtains

L 00

1+27TTasin 2m(E—F)

F—l — #ad' Fl = 2Tﬁbcos 2#(%7%)
[ ] det(F) ][ ] 1+2"Tasin27r(%—%) 1 0
0 0 1

One thus finds

47%a cos 2#(%—ﬁ)

L
LT+27aT sin 2#(%7%) 00
[L] = 472bsin 2#(%7%) 0 0
LT+2maT sin 2m(L— 1)
0 0 0

5) the tensors d et w are respectively the symmetric and antisymmetric
parts of L, cf. (B2.184). One finds

472a cos 2#(%—%) 272bsin 2#(%—%) 0
LT+2raTsin 2n(L— 1)  LT+2maT sin 2m(£— 1)
[d] = 2n2bsin 27 (4 — )21 ) 0 0
LT+27aT sin 2#(%7%)
0 0 0
and
0 —272bsin 2#(%—%) 0
LT+2maT sin 2m(L— 1)
[w] = 272bsin 27r(%—%) 0 0
LT+27aT sin 2#(% %)
0 0 0

The evaluation of the components of the vorticity vector is based on
relation (B2.187). One calculates

Q) =
Qp =
) 2m?bsin 2m (L — %)
Q3 = W21 = : 7 X .
LT + 2maT sin 27(5 — 1)

Solution 2.5

1) With the definition of the deformation gradient tensor (B2.67), we
write

a.
Fy=2 o

1
0X; .

—=

0
0
0 01

As tensor F' is independent of X, the deformation is homogeneous.
As det F' # 1, this deformation is not isochoric, as we will notice in
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chapter 3, (cf. (B3.38)). For the transformation to be invertible, it is
necessary to verify the inequalities (B2.69). This implies —1 < a <
+1.

2) One calculates successively :
the right Cauchy-Green deformation tensor

1+ a2 2a 0
C=F'F= 2¢ 1+4+a%2 0
0 0 1

the Green-Lagrange deformation tensor

1 % a 0
E = 5(C D= a % o0
0 0 O
the gradient of the displacement vector
0 a O
Vu=F—-I=1|a 0 0
0 00
the infinitesimal deformation tensor
0 a O
1 T
€= §(Vu +Vu )= a 0 0
0 0O

With the hypothesis
a<<l1

the tensors C', E, & become

14a2 2a 0 1 2a 0
C = 2 14a%2 0 ~(2a 1 0
0 0 1 0 0 1
0 a O
E=_(C-I)=|a 0 0 |=¢.
000

3) The unit eigenvectors of C' are given by the relation (B2.110). Let’s
express the vectors oriented in direction zg and the diagonals AH
and DFE. One has

Al = a(x1 + x2)
Ay = p(x1 — x2)
Ag = YI3 .
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By (B2.120), one has
CA; = N A; (no summation on %)

and therefore, one evaluates successively

1+a? 2a 0 « «Q
CA, = 2a 1+a®> 0 a | =10+a)?| «
0 0 1 0 0
= (1 + CL)2A1
1+ a? 2¢ 0 15} 153
CA; = 26 1+4+a®> 0 -8 | =0-a?| -p
0 0 1 0 0
= (1 — a)2A2
1+a®> 2a 0 0 0
CA;z = 2¢ 1+d®> 0 0 |=(0]=A;5.
0 0 1 0% vy

The eignevaleurs of C' are

A= (1+a)
A= (1-a)?
M=1

By the spectral representation C, one writes

C = A?(Az ® A;) = )\%(A1 ® Ap) + )\%(AQ ® Ag) + )\%(Ag ® As)

One has
« « a> a?2 0 % % 0
AIA = a ||l a =] a2 &2 0 | = % % 0
0 0 0O 0 0 0 0 0
8 8 B2 B 0 !
AAs=| B |e| -8 |=| -8* B> 0 |=| -3
0 0 0 0 0 0
0 0 00 O 0 0 O
AsA3=| 0 |® 0 |]=]1 0 0 0 =1 0 0 O
v 0 0 ~? 001

[eB I
N[ =

o O O



Kinematics of continuous media 23

One verifies

062 052 0 52 _ﬁZ 0
[Cl=(1+a)?*x| o® o®> 0 | +1—-a)?*x| -B% B% 0O
0 0 0 0 0 0
00 0
+1x| 00 0 |=
0 0 o2
1 1 1 1
. (17 . (5 20
0 0 0 0 0 0
000 14a®2 2a 0
+1x 0 0 0 = 2a 1+a%2 0 .
00 1 0 0 1

By (B.2.109), one obtains easily

0

0| =[F].
1

4) R=FU '=FF'=1.

Solution 2.6

For the right Cauchy-Green tensor, one carries out the algebra
C=F'F. C* = FTF*, F* = QF: F*T = FTQT = FTQ"!
C'=F'QTQF =F'IF=F"F=C.
For the Green-Lagrange tensor, one finds
2QE=C—-I; C*"=C
2E*=2E=FE"=F .
For the left Cauchy-Green tensor, one obtains
c= FFT, ¢t = F*FT. F* — QF; F*T = FTQT = FTQ"!
¢ = F'FT — QFFTQT = QcQT .

As a consequence, c is spatially objective. For the Euler-Almansi tensor,
one verifies

2" =I-c5 Q7"=Q;, Q7' =Q"
2e*=T—-c"'=QIQ" —Q Tc'Q ' =2QeQ" .
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Solution 2.7
With (B2.205) and the orthogonality of R, one has
F*=QF and RTR=1T.

By the polar decomposition theorem (B1.132), one writes

F=RU=VR; FF=R'U"=V*'R"=QF
R'U* = QRU
R*=QRUU* !,

This relation is trivially satisfied if we set R* = QR and thus U* =U.
Similarly one has successively

V'R*=QVR
and thus,
V*=QVRR'!'=QV(RR'QT)=QVvQ’.
Solution 2.8
With the help of (B2.88), (B2.91), (B2.179) and (B2.180), one has
2QE=C -1, C=F"F, F=LF; 2d=L+L" .

Therefore, one finds successively

E=—
2
C=F'F+F'F=F'LF+F'L"F=F'(L+L")F =2F'dF
E=F'dF .
Solution 2.9
The motion described by the relations
r1=MX1, x2=XMXs x3=X\X3,
leads to the deformation gradient tensor defined by (B2.67)

)¢

E;
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as the diagonal tensor

A0 0
Fiyj = 0 X O
0 0 As
The matrix of the right Cauchy-Green deformation tensor is
A0 0 A 0 0
[Cl=[FY[F]=| 0 X 0 0 X O
0 0 )\3 0 0 >\3
X0 0
=1 0 XM o
0 0 M
and the matrix of the right Green-Lagrange deformation tensor given by
1 1 M-1 0 0
El=5C-m=5( 0 B¥-1 o
0 0 M1
By (B2.88)
C =U?
one finds
A0 0
U] = 0 X O
0 0 A3
and thus,
{[F] = (U]
[F] = [RI[U]
and
[R] = [1]

Solution 2.10
With (B2.91) and (B2.92), one has
OQE=F'F -1 and 2e=I-FTF'.

The last relation is multiplied left by F~7FT (= I) and right by FF~!
to obtain successively

2e=F T (FI(I-F TFY)F)F!
=F T F'F-F'FTF'F)F!
FTFTF-DF!
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By the polar decomposition theorem, one has
F'=U"R" =UR".
By definition (B2.89), one gets
c=FF" = RUUR" = RU’R" = RCR" .

Solution 2.11

We recall relation (B2.108)

UA, = \NA, .
With (B2.112) one finds
RUA; = \,RA;; FA, = \;b; .
With (B2.109)
3

U = Z)\iAi ® A;,
i—1

we find
3 3
RU=> M[RA)®A; et F=> A\b®A,.

i=1 =1

Solution 2.12

Equation (B2.106) can be written as F'nds = JNdS or Fjnjds =
JN;dS.

Introduce (B2.147) in this relation to obtain
((Sji—i—O(E))’l’Lde = (1—|—O(€)) N;dS' (2.1)

which yields

2.13

Lengthy solution.
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(a) Use (B2.77), (B2.70), (B2.88) and (B2.120) to obtain

0X; " 0X;
o (Ui, 09U | 0L o
Y \o0X;  9X;)  0X;0X,

Then one evaluates

oU;,  oU; oU; oU; \ V/?
L N2 s i J i OUj
Uij = (FmiFm) (5” + (an * 8Xi> 0X; GXZ)

2 5ij + €5 + 0(62) .
In the last relation we used (1 + a)” ~ 1 + na for a < 1. Therefore

U~I+e.

(b) It is easy to show that
1 /0U, 0U;
-1 _ o k J 2
Ui =0 =5 <an * an> +0()
is the inverse of U;;, i.e. UZ-k,Uk_j1 ~ 0.
Then use (B2.73) as follows

oU; 1 /oU, oU;
ol s, 4 S I (Rt BT 2
Rij = FiUy, (czk + 8Xk> (5@ 5 <6Xj + an> +O(e ))

o 1jou; L. OU;
10U, (90U, OU; ,
T 20X, <aXJ aX,) +0()

1 aUZ 6Uk an 2

20X, <an aX,.) O)
L faui o\ 19U, (09U, U, )
=0 T 5 (axj 8Xi> 20X, <0Xj Tox, ) TOE)
= 5@' + wij + 0(62)
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Therefore
R~IT+w.

Short version
(a) Use (B2.77), (B2.70), (B2.88) and (B2.120) to obtain

oUp, oUpn,
Fmiij = <6mi + M) <5m] + (9)(]>
g ox; "™ ax, T9X; 0X;
oU; an>

~ 0ij (an X,

Then we evaluate

ou;,  aU;\\ />

5 L (29U, 9
T T2\ ox; Coox;

~~ (Sij + Eij
In the last relation we used (1 + a)" ~ 1 + na for a < 1. Therefore
UxI+e.
(b) It is easy to show that
_ 1 /oU, 0U;
Ul =6k — = | 2om + o2 | +O(2

is the inverse of Uyj, i.e. Uikkajl ~ Oij -
Then use (B2.73) as follows

_ oU; 1/0U, U
= F 1 _ ) ? R et AT
Rij = Faly (5”“ - an> (5’” 2 (an * ax,))

s _L(0Ui 0U;\ U
T 2\ox; T ax;) T aX;
1 /0U; oU; o

~ 0;; — =< -2

% =3 <8Xj T ax,; an>
B 1 /0U; U
=0ty (an - 8XZ~>
= 51‘]‘ + wij

to obtain
R~TI+w.
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Solution 2.14

Relation (B2.157) is given by cosyi12 = 2e19, where 712 is the angle
between two vectors initially (before deformation) orthogonal. The va-
riables €;; are the components of the infinitesimal deformation tensor.
The components of vectors before and after the movement (or defor-
mation) are given by the following relations with reference to figure 2.1

Xz, X,
R
X

) R,
X

O
€, X, x,

€3

Figure 2.1 Modification of the angles between two vectors.

dX :(dX1,0,0) = dx : (dz1,dxe, dxs) (2.3)
dY : (0, dYé,O) — dy : (dyl, dyg, dyg) . (2.4)

According to the body motion, one has from (B2.8)
dz; = dU; +dX; . (2.5)
We remplace dU; by the next expression (see top of p. 90 of the book)
dU; = €;;d X + wi;d X .

To simplify the algebra, we assume that the infinitesimal rotations va-
nish. Thus
Wij = 0=dU; = Eijde .
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The relation (2.5) becomes, taking into account (2.3)
de; = dX; +€;;dX; = (05 + €45) dX; = (6 + €i1) dXq
and then
dry = (1 +¢e11)dXy, dxe =e91dXy, drs=e31dX; .
Similarly, we obtain for segment dy
dy; = dY; + €5dY; = (055 + €45) dY; = (052 + €42) dYa
and then
dy1 = €12dY>2, dys = (1 +e22)dYs, dys = e32dY> .
By (B2.157), one writes

dx - dy
|dz|| [|dyll
(1+e11)e12 + (1 + e22)ea1 + 31632
1/2
(14 €11)? + €3, + €3] / 3y + (1 4 €22)? + €3]
€12 + €11€12 + €21 + €21€22 + €31€32

(14 e}, +2e11 + €3, +¢3] V2 35 + 1+ €3y + 2620 + €3,

cosyig =

172

]1/2 ’

Neglecting the terms of order greater than 1 (products of components
€i;) and taking into account the symmetry €;; = €;;, one obtains (B2.157)

de-dy 219 N 212
lde| |yl [1+ 2e11]Y2 [1 4 2e92)/2 (1 +e11) (1 +e22)
~ 2¢192 (1 — 811) (1 — 622) = 2¢19 (1 — €11 — €99 — 511822) ~ 2e19 .

cos Y12 =

Thus we have

cosy12 = 2€12

and consequently
cos Y12 = sin Y12 & P12 = 2612 ,

as 12 + @12 = /2.
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X, Uy

D

dx,
4
21

xZ ul

0]
X dx XU,

Figure 2.2 Deformation of an infinitesimal element.

Solution 2.15

Let ABCD be an infinitesimal element with sides dz; dzy given in
figure 2.2 (B2.23 in the book).

As angle 67 is small, we have the approximation

tanf; ~ 61
Inspecting figure 2.2, we find
B %ﬁdl’l
61 - ouq
d.ﬁUl + Tctld$1
and thus 5
g, = 22
6$1
By a similar line of reasoning, one has
0
by = L
8952

We know that

T
91+92=¢>12=§*712-
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Consequently, one finds

. . 0 0
cosy12 = sin ¢1a = sin(fy + 02) ~ 01 + 09 = a—z? + a—z; = 2¢19 .

By the definition of the relative extension (B2.153), we write

AB —AB  A'B —dn
AB N d,Il

€11 =

and
A'D'— AD B A'D" — dzy

£22 = AD dxo

Next we obtain the relations

2 2
(A'B')? = (dov1(1 +e11))? = (doy + %d:cl + %dazl
Oz 0

T
dz3 (e, + 2e11 + 1) = da? 1+2%+ Ou 2+ duz)*
L 1 N 1 (9.%'1 81'1 8.%'1

6u1

2 ~2— .

eu 8x1

Thus

ey 21
11~ o,

and for (A’D’) one has

Solution 2.16

By relation (B2.80), within the framework of small deformations,

one has
d52 - dS2 == QEUXmdXJ =~ 2€Z‘jd$id$]’ .

1)
dxl = 1,da:2 = d.’Eg =0

ds®> — dS? = 2611d£1?% =4.1073
dS=dri=1=ds’>=1+4.10"3 = ds = 1.002

=ds—dS =1.002 -1 =10.002
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2)
dres =1,dr1 =dx3 =0
ds® — dS* = 2e99da3 = 41073
dS =dzy=1=ds* =1+4.1073 = ds = 1.002
= ds —dS =1.002 — 1 = 0.002
3)

2
dmlzdIL’Q:l-\é»,dxg:O

ds® — dS* = 2e11da? + 2e90dx3 + 2 - 2e19d2 1 dz+o

3 /2
—(2-2+2-2+2-2-1)-103\2[{—6-103

dS=1=ds*=1+6-10"% = ds = 1.003
= ds —dS =1.003 — 1 =0.003
We may also use (B2.153) to get

_ds—dS
- dS

EN = 0.003 = ds —dS = 0.003 - dS = 0.003

Solution 2.17

Let PQ = dS and pg = ds the lengths given on figure 2.3. By
(B2.151), one has
d82 = dS2 + 2€ijd.%'id£1?j .

In two dimensions, one writes
ds®> = dS? + 2€1ldl‘% + 2822(1:13% + de1odr1day .

This last relation yields

ds® — dS? dz? dx? dridxs
Tagr = 2Engg t2emg T a (2:6)
Let us set
S ds —dS
NTas

The left hand side of (2.6) becomes

2 a2 2 2 B 2
ds dS:ds _1:<ds_1+1> _1:<ds dS+1> .

ds? dS? ds ds
= (en+1)2—1=¢e% +2n . (2.7)
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x, q
N
______p_ _______ Q 200
0 ’ ?
X
dx, !
Figure 2.3 Deformation of a linear element.
In the case of small deformation, we allow that
g3 —0. (2.8)
Referring to figure 2.3, we define
d d
cosf = % and sinf = % . (2.9)

Combining (2.6) and (2.7) and using (2.8) and (2.9), we eventually obtain
en = €11 082 0 + £99 8in% 0 + 2e15 cos O sin b .

Utilizing trigonometric identities the last expression becomes

€11 teEx €11 —€

5 5 2 0520 + 2e12 8in 20 .

EN

In a direction normal to N, one has

€11 +¢€ €11 — € .
EN+r/2 = L 5 2 5 22 cos 2(m/2 +0) + 2e128in2(w/2 4+ 6)
ENfr/2 = futen fu—en cos 20 — 2e198in 26 .

2 2
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Dynamics of continuous media

Solution 3.1

Incompressibility (B3.45) requires V - v = 0. Applying 0/0x; to the
velocity field, one has

3 2,.. 0
ov; - Ar®d;; — 3Ar xldT;

Ox; r6
AT3(SZ'Z' - 3A7’2:L'i%
76
=0

since z;z; = 2.

It is also possible to solve the problem by computing
8%’ 8

v — — AL (i (i) 32
dive = 0z, Aaxi (:C,(a:jx]) )

_ 3 _

= A (51-1'(953'%)3/2 - gfﬂj : 2(%%)5/21?]') =0,
as (5” = 3.

Solution 3.2

The mass conservation equation (B3.53) gives

Dp v 61)1‘ 3
—_— = — U = — = — —_— .
pt -~ * Pom: — P\1+t

Integrating from the initial time ¢ = 0 till the present time ¢, one obtains

P dpl /t dtl
2T —_3 —
PO p’ o 1+
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giving then

P 1

LA S 3.1

po (1+1)3 (31)
Let us calculate the trajectoires linked to the velocity field (B2.35). One
has .

do; = vidt = ———dt .
S )

Integrating this relation from the initial time ¢ = 0 till the actual time ¢
/%mg_/tﬁ’
X; I; N 0 1 + t/ ’

111% =In(1+1¢)

yields

and thus

T = X1<1 +1), 20 = Xo(1+1t), z3 = X3(1 —i—t)
T1X2x3 = X1X2X3(1 +t)3 . (3.2)

The combination of (3.1) and (3.2) results in the relation pxjzxozs =
poX1X2X3.

Solution 3.3

The incompressibility equation in cylindrical coordinates (BA.2) is
written as

19(rvy) n 19dvy  Ov,
r Or r 00 0z

It is easily deduced that the given velocity field is incompressible.

Solution 3.4
1) With the matrix [o]

0 Cl‘l 0
[O’] = Cl‘l 0 —ng
0 —CIQ 0

the static equilibrium equation (B3.126) gives

fr=—015;=0
fa= =035 =-C
f3=—03;;,=C.
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2) The normal vector to the plane given by surface f(x;) = 0, at point
P of coordinates xp = (4,—4,7) is defined by its gradient

Vf(zp)
n(xp) = ST
IVf(xp)ll
1
= @22,-) ——— =
(224224 1)2
1
= -(2,2,-1)7
3( = )
For the plane, the stress vector at point P becomes
0 4C 0 2
[tlptane = [o]ln] =< | 4C 0 4C 2
0 4C 0 -1
1 8C 1 8C
8C 8C

The normal vector on the sphere at point P is

n(zp) = Vi(xzp)
IVf(zp)|
1

= (2331,21‘2,2.%’3)T 1 =
((221)% + (222)? + (223)?)2
- (IZJ‘l,IZ‘Q,ZEg)T ! =
((z1)? + (22) + (23)?)
= (4,-4,7)7 ! =
(16 + 16 + 49)2

1
= —(4, -4, 7T .
9(7 ’)

N

The stress vector on the sphere at point P is

0 4C 0 1

s = [ollnl == | 4c 0 4C 4

0 4C 0 7
_16C =t
— | 16c+2c | == ac
—16C I\ “16C

3) the principal stresses at point P are the eigenvalues of tensor o (P)
obtained solving (B3.111) :

det(a(P)— M) =0,
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where A\ = 0.
With the definition of invariants (B1.121), one obtains

0 4C 0
4C 0 4C |, L =0, [, =—-32C% I3=0
0 4C 0

with
I, = —4-4C% —4-40?% = —3207? .

The characteristic equation (B1.123) written for matrix [o] becomes
AP —32C°A =0,
or
AN =32C%) =0.
The first solution is A = g2 = 0. The other solutions are given by
A\ =3207
or
01,3 = + |C‘ v32 .

For simplicity, the convention o1 > o9 > o3 is adopted.
The maximum shear stress is : [T - oN|nax = (01 — 03)/2 = C'V/32,
where T is the tangent vector in P.

The deviatoric part of o is by definition O'idj = 0ij — (0kk/3)dij. As in

our case, the trace of o is zero, the given stress tensor is identical to
the deviatoric tensor and the principal deviatoric stresses are equal
to the principal stresses.

Solution 3.5
In absence of body forces, the equilibrium equation is written as
0ijj =0
When applied to (B3.166), one has

o11,1 + 0122 + 0133 = 8x1 + 8xa — 8x1 — 8x2 =0

I I
021,1 + 0222 + 0233 = -5 8z + o) +8xo=0

031,1 + 0322 + 0333 =0

The given stress field satisfies equilibrium.
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Solution 3.6

The body B is in equilibrium if the total force and the total moment
are both equal to zero.

Equilibrium of forces

We write the equation with pressure P in the component Fj of the
force. Then, we use the divergence theorem to obtain (as P = cst)

F = —/ (Pny1 + Ong + Ong)ds = —/ —dv =
Ow w 8I1

Similarly, one obtains F» = F3 = 0. Thus, the equilibrium of forces is
satisfied.

Equilibrium of moments

The moment with respect to the origin O of the force generated by
the pressure, at point @ is

M(O) = OM x (—Pn)ds=—P | OM x nds
ow ow
e ey e3
OM xn =|x1 z2 23

ny na2 n3

= 61($2n3 - .%'3712) — 62(x1n3 — $3n1) + eg(xlng — .%'in) .

The first component of moment is expressed as

M,(0) = —Pel/ (xons — x3ng)ds
Ow

ni

:_Pel/ (0 —3 :L‘g) no ds .
Ow

n3
Appying the divergence theorem to this last expression, one obtains

ny
Ml(O) = —Pel/ ( 0 —I3 I2 ) no ds
ow

ns

00 83:3 8%2
=—P _— 4 —= =0.
e1/w (8501 D + (9363) ds =0

Similarly, one obtains M>(O) = M3(0) = 0.

Thus the moment is also equal to zero. The solid body is in equili-
brium.
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Solution 3.7
Equation (B3.111) gives
det([o] = A[1]) = 0

Applied to (B3.167), one obtains

or via (B1.120)
N+ N —DA+13=0. (3.3)

The invariants (B1.121) are

11:3]9
I:’pp’ 'pp‘ ‘pp’:()
p p p p p p

Equation (3.3) becomes

M 43pAt=0
yielding
g1 = 3p
g9 = 0
o3 =0

The resulting stress state is one of uniform traction (p is supposed such
that p > 0).

Applying (B3.111) to (B3.168), one has

p—A p P
P p—A P =0
P P —2p—A

The invariants are I; = 0, [y = —6p?, I3 = 0. Equation (3.3) gives

A6p% — N2 =0
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One finds
01 = \/ép
o9 =0

o3 = —V/6p

This is a simple shear stress state because the two principal stresses are
equal and opposite.

Applying (B3.111) to (B3.169), one has

0—A P P

P 0— A P =0
P P 0— A
The invariants are
L =0
_ |0 0 p 0 p|_ .2
12_’17 OHP 0'+‘ 0‘_ P
0O pop
I3=|p 0 p|=2p°
p p 0

Equation (3.3) becomes
N3P+ 202 =0
that can be decomposed as

(A=2p)(A+p)*=0

o1 =2p
02 =03 = —Pp

The resulting stress state is a three-dimensional stress state.

The principal stresses are

Solution 3.8
By the deviatoric tensor definition (B3.123), one has

1 1
Sij = Uij — géijokk = Uij - géijll (0’) . (34)

The characteristic equation is given by (B1.123)

s3 —I1(s)s? + Ir(s)s — I3(s) =0 .
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With (3.4), one has for the first invariant
1
Ih(s) = sii = 04 — 50ii0kk = 051 — 530kr = 0.
Thus
83+ Ir(s)s — I3(s) =0 .
In the literature, the next form is used

83— I(s)s — I3(s) =0

with 1
.[2(8) = —5 (Siisjj — Sijsji) , 13(8) =dets .

The first relation is none other than (B3.171).

One writes successively

1 1 1 1
Iy(s) = 551']'5]‘1’ = 5 (Uz‘j - 35ij0kk> (Uz‘j - 36ij0kk>

1 1 1 1
=5 (Uz‘jazj — 30ij0ij0kk — 50ij0ij0kk + 95z‘j5ij0nn0kk>
1 1 1 n 1
= — | 04j0ij — 0}jOkk — =0;jO —Onn0
9 1501 3 77V kk 3 779 kk 3 nnV kk
1 1
= 5 UZ']'O'ij — ggjjo'kk; .
Using (B3.116) to replace 0;j0;; we obtain
1 ) 1, 1 2,
Ir(s) = 5 —2I(o) + I{ (o) — gfl (o)) = +3 —2I(o) + §Il (o)
1
= g112(0) — (o). (B3.171)

For the third invariant, we proceed as follows (cf. (B3.118))

s15955 = (m - ;Il(a)> <ag - ;11(0')> <03 - ;Il(a')>

1
— 010203 — 511(0') (0102 + 0903 + 0'301)

13(8)

1 1
+ 7112((7) (01 + 09+ 03) — —If’(a)

9 27
= I5(0) ~ 3 11(0) (o) +  Ti(@) — -1} (o)
= 2 B(o) - 1 1(0)D(0) + Ix(0) - (B3.172)

27 3
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Solution 3.9

Through the divergence theorem the surface integral is converted
into a volume integral

O(P;;
/ Pz‘j...qunquI/( j"'apq)dv
Ow

w Oz
= /[quPiJ'...,q + Pij..0pgqldv .
w

Replacing V - o in this last relation by its expression produced by the
momentum conservation law (B3.96), one obtains (B3.173).

Solution 3.10

The first Piola-Kirchhoff stress tensor is defined by the relation
(B3.141) :
P=JoF 1.

Multiplying (B3.141) right by F*, one has
PFT = JoF 'FT = Jo .
The transpose of (B3.141) gives
Pl =JF 'oT.
Multiplying left this last equation by F', one finds
FP' = JFF'o" = Jo' = Jo
and thus
PFT = FPT. (B3.144)
Solution 3.11
Equations (B3.149) and (B2.205) give
P"=QP; F"=QF .
Equation (B3.152) yields
S=F'P=P=FS.
Therefore, one has

P*=F*'S*= QP =QFS*=Q'QP=P=FS*.
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However, by definition,

P=FS
Consequently,
FS=FS*,
that leads to the result
S=85".

For the symmetry case, one has successively
S=JF'loF T=8" = JFTeT(F) =JF 'eTF T

and since
oc=0'=8=8T.



CHAPITRE 4

Energetics

Solution 4.1

With Reynolds transport theorem (B3.23) and the continuity equa-
tion (B3.41), one has

jt/de /w

D(pQ) | 0 8vm)

(
( 204022 1)
(

Let us calculate the material derivative of the kinetic energy Ej,

DEk d/ (vv)d /D(’U’U)d / J
v = — v = a-vdv.
Dt dt 2 D\ 2 e

Replacing pa by the expression from (B3.96) one obtains equation
(B4.26).
Solution 4.2

By the definition of the kinetic energy (B4.1) and the internal energy
(B4.2), one has

5t(Ek( 1) + Ep(t)) = DBt K (%Y ) do
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Applying Reynolds theorem (B3.23) we are left with the following de-
velopment

D @ﬁ+>d_
Dt ) P\ T

[ (%5 e 0) (52 +2) 7ol

:/w[(v;’ﬂL) <gt+pV v) +pD2t (S5~ +u)ldv

The expression in the second term between parentheses of the last re-
lation is the mass conservation (B3.41). As a consequence, this term
vanishes. One finds

D vV Dv Du
dv = — 4+ —d
Di w”(z +u)dv /ﬂ(” Dt+Dt>”

As Dv/Dt is equal to a, the problem is solved.

If we keep the material derivative of v, we may write

/ v - &—F& dv—/ 7D(v-’v)+% dv
P\ D T )T P\ 2D T e
D v-v

= wpﬁt(? + u)dv .

This shows that the material derivative of the integral over a material
volume of a quantity equal to p times an expression is written in general
form as the integral over a material volume of p times the material deri-
vative of this expression. This statement constitutes a general theorem.

Solution 4.3
1) Inequation (B4.81) is given by

d r q-n
— > — _
ﬁAMM_ATM AMT ’

Using the result of the previous exercise, the left hand side becomes

psdv—/ —dv.

By the divergence theorem (B1.228), the surface integral of (B4.81)

becomes
/ "k / K
oxy,
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Applying the localisation principle one obtains

2 iy <3> : (4.1)

2) With the equations (B4.23) and (B4.25), one has

D
p%—a:d—l—divq:r. (4.2)
Employing the index notation, it is easily shown that

q-VT
T2

div (%) = %divq — (4.3)

Bringing (4.2) and (4.3) in (4.1), we find Clausius-Duhem inequality

>
Ppi =T

Ds 1 Du
PDi

1
—a:d)+T2q-VT. (B4.83)

3) If we introduce the Helmholtz specific free energy ,
f=u—-Ts, (B4.84)
the Clausius-Duhem inequality (B4.83) is rewritten as

D
p?{ <tr(oL)

DT q-VT
—pS——— .
P T T T

(B4.85)

Solution 4.4

1) The principle of internal energy conservation is given by the relations
(B4.23) and (B4.25)

D
p%:o’:d—divq—l—r. (4.4)
For a perfect fluid, the term o : d becomes —ptrd = —pV - v.
2) Substituting the enthalpy definition in (4.4), one has
Dh D (p) i 9g;

— —p— == — . 4.5
th 'ODt P p@:ci 8%—1—7“ (4.5)

The development of the term D% (%) gives



48 Energetics

Substituting this result in (4.5), one finds
Dh  Dp pDp ov;  0g;

pﬁ Dt p Dt p@xi B ox;
_Dp p(Dp  Ou 9gi
B P ( Dt * pax,- r

+r

Dt B 835@
_ Dp  9g
=Dt 0w

where we have used the mass conservation law (B3.41).
3) If moreover, the flow is adiabatic, i. e. ¢ = 0 and r = 0, one has
Dh  Dp
"Dt~ Dt
Solution 4.5

As rigid body rotation implies by (B4.61) ¢ = 0, it follows that
¢ =0. By (B2.211) and taking (B4.63) into account one has in

v =¢+Qx+Qu=Qu+Qx.
With (B2.60), one finds
v'=vtwxax. (4.6)

The vector w is the dual vector of €2, that expresses the angular velocity
of rigid body rotation. We rewrite (B4.48)

pi—o :Vv+divg—r + v (pa — divo — pb)

1
+ <2'v ‘v —i—u) (p+ pdive) =0, (4.7)
(where the notation p designates the material derivative in Lagrangian
description), with starred quantities. We first replace v™* by its value (4.6)
and from the resulting equation, we substract (4.7). Using the relations
(B4.49)-(B4.53), (B2.212), (B2.213), one obtains

(wx ) (wxx)
2
+ (wxa) - (pa—dive —pb) =0 .

—o:Q + (p+ pdive) + (w x @) - v(p + pdivo)

This must be true for any rigid body rotation and thus we deduce the
equations of mass and momentum conservation. The remaining term o :
2 must vanish. Due to the antisymmetric character of €2, this imposes
the symmetry of o.



CHAPITRE 5

Constitutive equations

principles

Solution 5.1

basic

The vector field w is spatially objective and satisfies relation (B2.197)

u* =Qu .

One has on the other hand that

. Oui  Ouj Owmy
(V)i = o} Oy, o ’

By (B2.195), one finds

o}
e Qjk
and its inverse Oz /0] is Q,;jl = gj Thus one has
. oul ouy
(Vu)z‘j = 8701 = Qilaikukj

J

or
(Vu)* =QVuQTl .

Solution 5.2

(B5.61)

Through the relation (B2.213) and definitions (B2.181) and (B2.183)
of d and w, respectively, and taking into account equation (B2.56)

QQ" +QQ" =0,
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one writes successively
)" = QI'Q" +Q"),
@ = J(L+ (L)) = Q5 (L + LT)QT + 1(QQT + QQ")

= QdQ",
o = %(L* — (L)) = Q%(L - LMQ" + %(QQT -QQ")
= QuQ" +QQ" .

Tensor d is spatially objective and tensor w is not. Indeed, if two obser-
vers record the rotation rate of a continuous media, their observations
differ by a quantity equal to their relative rotation rate.

Solution 5.3

Note first that D/Dt* = D/Dt. Tensor T being spatially objective,
if we take the material derivative, one obtains successively

DT*  D(QTQ") DQ DQ”
Dt Dt - Dt Dt -

This shows that the material derivative of a second order tensor is not
spatially objective.

TQ" + Q%QT + QT

Solution 5.4
With the help of results of problems 5.2 and 5.3, and relation (B2.56),
we write
T+ T*6* — o*T* = QTQT + QTQ"T + QTO"
+RTQT(QVQ" +QQ") — (QwQ" +QQNQTQ"

= QTQ" + QTwQ" — QuTQ"
= QT+ Tw—wT)QT .

This shows that relation (B5.62) is spatially objective.

Solution 5.5
Equation (B5.64) is nothing else than problem 5.3 solved for T' = d.
Therefore, taking (B2.56) into account, from (B2.213) and its transpose,
one has to within a factor 2
d +d'L* + L™d" = QdQ" + QdQ" + QdO"
. - T

+QdQ"(QL+Q)Q" + Q(L'Q" + Q)QdQ"
= QdQ" + QdLQ" + QL"dQ" .
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Classical Constitutive Equations

Solution 6.1

Equation (B2.88) gives

C=F'F,
from which we obtain via (B2.179)
C=F'F+F'F=F'L"F+F'LF .
As for the simple fluid F' = I, one finds
C=L"+L=2d.

Solution 6.2

Equation (B4.23) is

— =o0:(Vv)—divg+r.

The term o : (Vv) with the constitutive equation (B6.14) becomes with
the help of (B4.25)

o:L=o:d=—ptrd+ \trd)*+2u(d:d) .

Thus, for the Newtonian viscous fluid, one obtains
Du

P Df = —ptrd+ \trd)*+2u(d: d) —divg +r. (6.1)
The perfect fluid is inviscid, i.e. A = p = 0. One finds
Du

pﬁ = —pitrd—divg+r.

If the perfect fluid is an ideal gas, then its internal energy is given by
relation (B6.143) and the previous equation becomes

= —ptrd—divg+r.

P& Dt
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Solution 6.3

The Newtonian viscous incompressible fluid satisfies the constraint
div v = trd = 0. In this case, relation (6.1) yields

D
pﬁ? = 2u(d: d) — divg + 7.
For the perfect fluid, one finds
Du_ _givg+
— = —div .
th q-rrT

Solution 6.4

1) Relation (B2.108) shows that U has A; as eigenvectors. By (B2.109),
one writes the spectral decomposition

3
U:Z)\iAiG@Ai.

i=1

With (B2.88), one has successively

3 3
C=UU = ZZ)\i(Ai ® Ai)Ni(A; @ Aj) =
i=1 j=1

3 3
=D D AN(Ai@ A)(4;® A)) =

i=1 j=1

3 3

i=1 j=1
3
=> N(Ai®A).
i=1
The isotropic hyperelastic material has for constitutive equation (B6.51)
OW(C)
oc

With (B6.64), one obtains relation (B6.67) for 817\/\(0)/80 and fi-
nally, one has for (B6.68)

S=2

7

3
1
ZX

which shows that S has A; as eigenvectors.
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2) Relation (B2.111) shows that V' has b; = RA, as eigenvectors. By
(B2.113), one writes the spectral decomposition

3
V=> \b®b.
i=1
With(B2.89), one has successively

3 3
c=VV = ZZ)\i(bi ® b;)A\j(b; @ bj) =

i=1 j=1

3 3
=3 AN b (b by =

i=1 j=1

3 3
= Z Z Aij6ij(b; ® b;) =

i=1 j=1
3
=> A(b;@b;) .
=1

This proves that ¢ has b; as eigenvectors.
In section B6.5.1, after long developments, one obtains relation

(B6.72)
3
_ 0¢
_ 1 . . .
o=J (;Zl Nigy bi® bz) :

which shows that o has b; as eigenvectors.

Solution 6.5

Relation (B6.61) multiplied left by F and right by F7 gives
0P 0P 0P 0P

1
~“FSFT =, _FC'FT 4+ IL— | FIFT - —_FCFT .
2 S0l * (811 * 18[2) 1y

(6.2)

With the help of (B2.88) and (B2.89), one has
FC'FT=FF'FTF' =1
and
FCF" =FF'"FF" =cc=c*.
Equation (6.2) taking (B3.152) into account becomes (B6.63)

_ 0P 0P 0P 0P
o=2J"1 <13(C)813(C)I + <8II(C) + Il(c)@]g(C)) c— 9500 c2> .
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Solution 6.6
Relation (B6.61) is

0P oP 0P 0P
S = —c! —+ 1T —C ) .
( L (8[1 * 1312) ol )
The Cayley-Hamilton equation (B1.123) applied to C' gives
(o —I]_CZ"_IQC—I?,I: 0

and thus
LC'=C?-1,C+ LI.

Combining it with (B6.61) one finds

S 0% 0P o ok
= C?>-1,C + LI I —C
2 = o1, ( ! +2)+(8I+18[> oL,
oD oD o 0b 9D oD
—— 41 I I-(I—+-—|C+——C*.
(6[1 Thon T 28[3> < o5 " 612> oL,
Relation (B6.63) is given by
o o Rk 0D
=2J 7 (—TI +1 —c) .
7 < 591, <8Il 1@12> T on° )
The Cayley-Hamilton equation (B1.123) applied to ¢ gives
S —Le+Lhe—LI=0
and thus
?=nLe— LI+ !
Combining it with (B6.63) one obtains
o 0P 0P 0P o o O
=I3—1I + 1 —Lh—c+h—I—-I3—c!
271~ Ban" T (8]1 1812> LT Pon T BanC
P O b oD
=2 (L= +1T I+—_—c—I3—c').
o =2 <<2afg+ 38[3> R TR T A )

Solution 6.7
According to (B6.80), we can write

O(I1, Iz, I3) = Cooo + Croo(l1 — 3) + Cor0(L2 — 3) + Coor1 (I3 — 1)
+ Ci11(L1 =3) (12 —3)(Is— 1)+ ... .
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In the reference configuration, one has
)\1:)\2:)\3:101‘CZI

and then
L=31=31I3=1.

Consequently, one obtains

®(3,3,1) = Cooo -

If Chpp = 0, then the energy is zero, at the reference configuration.

The partial derivatives of ® with respect to the invariants are

0P
77 = Croo + Cr11(l2 = 3)(I3 — 1) + . ..
o6
0P
— =Coio+Cii(li —=3) (I3 —1) +...
al
0P
= Coo1 + Cr111(I1 —3)(J2 — 3) + ...
015

Thus, at the reference configuration (B6.62) becomes

od 0P 0P
20 1 57 = Cigo + 2C010 + Coor =0 .
ol 0ly  0I3 Croo Coro + Coor =0

Solution 6.8

The first equality of (B6.59) gives with the help of (B1.144)

3
o6 O+ 23+
= — E 5 (n; ®n;)
6 i=1 ox,
=N ®Nn| +ny®ng +ng X ng

n;, ®n;

I
~

95
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The second equality of (B6.59) gives with the help of (B1.144)

2L O(A2A2 + A2\2 + A2)2)

N2

(n,- &® nl)

|
(]

=1
= (A 4+2)(n1 @n1) + (A3 + A (ng @ng) + (A +23)(n3 @ n3)
=M+ M40 on) + (A + X3+ 2\2)(ng @ ny)
+ (AT + A3+ A3) (n3 @ ny)

—\2 1(np®mny) — A%(ng ®ng) — /\g(ng ® ng3)

—LI-C.

Solution 6.9
The pressure in the inflated balloon is given by equation (B6.102)

1 1
p(A)—wmm(l—Aﬁ).

The maximum pressure is obtained when the derivative of p with respect
to the stretch ratio A vanishes

32%’()\)_
oA\ =0
One has
A1 1N_ 1T,
dy\N AT) A2 N8
and thus

N =7=)\=V7=1.383

1 1 CloeZ
mae _ 4 1-2) =24
b 010R1383< 7> R

Solution 6.10

The Ogden energy function is relation (B6.86)

Q;

N
SO A2 As) = D BEOS 1 Ag A3 - 3)
i=1

The principal stresses are given by relation (B6.78)

9¢

= — A
P+ ka)\

k=1,2,3.
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Therefore, one writes
N
o1 =—p+ Yy wA"
N
03 = —p+ Y ks

N
o3 = —p—l—Zui/\gi .

— Case of uniaxial stretch : 01 = 0,09 =03 =0and A\ = X\, Ao = A3 =
A~1/2 (incompressibility). One obtains due to these conditions :

2} N N —ay
a:—;ui)F?—f— ;,ui)\o‘i = ;ui(Aai—A z)

— Case of biaxial stretch : 01,09 # 0,03 =0, A3 = )\1_1/\2_1 (incompres-
sibility). One obtains due to these conditions :

N N N
o1 =~ Zlm(hlh)“i + ZluM?’ = Zlm(ki“ — (o) ™)
1= 1= 1=

N N N
g2 =~ Z:lﬂi(/\ll)\Q )ai T -zzlm)\al - szui(/\gl N ()\11)\2)%)
1= 1= 1=

— Case of equibiaxial stretch : 01 = 02 = 0, 03 = 0 (particular case of
biaxial stretch) and Ay = Ay = A, A3 = A2 (by incompressibility).
One obtams due to these condltlons

U—*Zﬂz)\ QOMWLZ/%)‘%_ ZMZ()\OM*)\ 2041)

Applymg the prescrlbed values Of the terms, namely N = 3,a; =
1,3,a9 = 5,3 = —2,u1 = 0,63MPa, ps = 0,0012MPa and pz =
—0,01MPa, we can plot o1, 09, o3 as a function of their corresponding
elongation.

Figure 6.1 shows the evolution of the uniaxial stress with respect to
its elongation, while figure 6.2 exhibits the evolution of the equibiaxial
stress.

Solution 6.11

The stress tensor has only one non zero component, namely o171 = .5,
where S is the traction load per unit surface.

The free energy f is given by (B6.159)
1 of

~0ij =
P eij
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Evolution de la contrainte uniaxiale en fonction de son élongation
5 -

a5
4t
351 ; A

25T

Contrainte[MPa]

2|
15 e
1| =

osf -~

1 15 2 25 3 35 4
Elongation

Figure 6.1 Uniaxial stress

and thus
S of

P ~ Oenn

By (B6.110), one has
A+ 1

S N - s,

(3N +2p) E
where E is the Young’s modulus (B6.109). One writes (6.3) as follows
S of 08

p  0Sdenn

€11

So
aof S
08~ pE
and finally we have integrating :

152
f_p_E7+f0’

where fo is the unstressed free energy in natural state.
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Evolution de la contrainte equibiaxiale en fonction de son élongation
8 -

Contrainte[MPa]

1 1.5 2 25 3 35 4
Elongation

Figure 6.2 Equibiaxial stress

Solution 6.12

The development of f(€,T") in the neighborhood of € = 0,7 = Ty is
written as :

A
pf=pfo—pso(T—"To)+ 5 Cii€hk + HEi €3
C
+ eijei (T — To) — 2(T — Tp)? (B6.165)
27T,

where we have eliminated all terms of order greater than 2, and where
the coefficients fo, so,c;; and c are still to be determined. The factors p
and T% were added to simplify subsequent steps.

For an isotropic material, ¢;; must isotropic, of the form a ¢;; with
a a scalar. Taking this scalar as a = —(3\ + 2u)a, with « yet to be
determined, one has

Cij €ij (T—Tg) = —(3)\+2u) O €Lk (T—T()) . (B6166)

Furthermore, combining (B6.165) and (B6.166) one obtains by (B6.159)
the next relation

of

Tij = Py
ij

= Neprlij + 2pei; — BN+ 2p)a(T — Tp)dij -
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Inverting to obtain € as a function of o, one has

1 A
= — 2 T—-T5) — ———t I
“= 2 {”[“a( 2 3A+2um} }

where we have used the relation

€Lk oki + 3a(T —Tp) .

B 1
3N+ 2

As a reminder, « is the thermal expansion coefficient and has di-
mensions of the inverse of temperature. If we consider the case of free
dilatation without exterior stresses, then o = 0 and one has

e=a(T —Ty)I .

As T =T(x1), €11 is the only non zero component and consequently

T
€11 = 611(.731) = Oz(Tl — T()) fl .

Solution 6.13

To solve this problem,we will use the solution of the second part
of exercise 6.2. Introducing the Fourier conduction law ¢ = —k VT in
(6.2), one obtains

DT
Peopr = —ptrd+div(kVT) +r.

By the mass conservation equation (B3.41), one has the equality :

1D
trd=—-—2F
p Dt

and the energy equation becomes

DT pDp

Using the state equation (B6.136), we transform the previous equation
in the relation :

DT Dp DT
pcvﬁ = ﬁ — pRE + le(k VT) +7r.

Finally, one can write taking (B6.141) into account

DT Dp .
P 5 = Dr +div(kVT) +r.
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Solution 6.14
1) The relations (B6.175)-(B6.176) lead to write

o + 000i; = BAeobij + 2u(ed; + €0dis) - (6.4)
Let us recall that the deviatoric tensors have a zero trace
trafj = trazdj =0.
Therefore, computing the trace of (6.4), one obtains

3009 = 3Xe0-3 + 2pue0.3

and
00 = 3XAeg + 2ueg = (3)\ + 2/1)60 .

The definition (B6.119)

K- 3N+ 2p
3
gives
o) — 3K€0 .

We rewrite (6.4) successively

Gldj + 3K€0(5ij = 3)\5051‘]‘ + 2#6% + 2[15051']'
= (3\ + 2u)e0di; + 2uel;
= 3K805ij + 2#8% .
One finds
Uflj = 2@5% .

2) Let us recall that for a second order symmetric tensor L, one has
Ln = An, where X\ is the eigenvalue of L and n the corresponding
eigenvector (sec. 1.3.8).

For the deviatoric stress tensor o¢

ij» one has

Ugjnj = An; . (6.5)
We modify (6.5) as follows
afjnj + ogn; = oon; + An; = ()\ + Uo)ni

With the help of (B6.175), one writes

d d d
03N + ooni = oj;ng + 00diing = (Uij + 00dij)n; = oin; -
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And we obtain o;jn; = (A + 0¢)n;. This shows that azdj and o;; have
the same eigenvectors.
As regards the displacements, we proceed in a similar fashion. Using
(B6.177) in (6.5) gives

d A

E4Ng = an . (6.6)

This shows that Uflj and 5% have the same eigenvectors and conse-
quently, the same principal directions. Using (B6.176) to rewrite

(6.6) leads to the relation

(Sij — 60(52']')77,]' = ﬂnz

or

gijng = (€0 + 7—)Ni -

iinj = (€0 2,u) i
Comparing this last relation with (6.6), one concludes that €;; and
Efj have the same eigenvectors. Finally, as

Uflj and o;; have the same eigenvectors n;,
d

of;

;5 and sgj have the same eigenvectors n;,

we conclude that ¢;; and 0;; have the same eigenvectors n; and conse-

quently, the same principal directions.

and 5% have the same eigenvectors n;,

3) The potential strain energy is defined by the next relation

1
W(E) = ié‘ijO'Z‘j .
One thus has
1 1 1.,
W(s) = 58@‘0’,‘]‘ = igij()\gkkéij + 2/%;‘@]') = i)v’;‘kk + peijcij -

With the help of (B6.176), one writes

1
W(E) = *A(3€0)2 + M(Egj + 80(51']')(6% + 506@)

2
9
= 5)\(50)2 + u(sgjefj + 3¢2)

9
= 5)\(60)2 + 3u(eo)? + ,us?jeﬁlj

93X+ 2u
= 573 5(2) + pegje?j

9
= S Kej + peijel; - (B6.178)
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4) For the stability condition
Wi(e)>0

to be satisfied, as relation (B6.178) is composed of two squares, the
coeflicients must be such that

K>0 e pu>0.

Solution 6.15
1) With (B6.106),(B6.180) and (B6.181), one writes

c /\(Sij I Oij

i = T a 7ox o a 0nn o

J 20(3X + 2u) 24
)\5@' O‘5¢j

T 2w 2

3\ N 1 5
2u(BN+2u)  2u "
—3A+3\+2u
TOATOAT AR S
2u(3\+2u) Y
o
~ 3"
= 55@‘ .
2) By Hooke’s law (B6.104) and (B6.182), one has
055 = )\Ekk(sij + 2/1,61']‘

A
= g(mknk + mknk)&j + ,u'y(mmj + mjni)

=0+ ,u’y(minj + mjnz-)
= T(minj + mjni) .
3) With (B6.106) and (B6.184), one obtains
€ 7)\51“ NNy, + ! nin
ij — — ONmMm T 70NNy
J 20(3N + 2p) 2u J

- Ao (5.._n.n4+n.n.)+ign4n.
20(3X +2u) v D TV
A 43A+ 2 Ao

N < 20(3X + 2p1) >(mmj " 2u(Eh + o) 0 )

_ (At ._)‘70(5.._ ;)
“ a2 ) T 23N 2 T

=éepniny + 5T(5i' — nmj) .
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Introduction to Solid Mechanics

Solution 7.1

With (B7.18), equations (B7.21)-(B7.23) yield

. £ Our () _ Ouy
U A (1 - 20) (6361(1 V)+V8x2>

o FE BUQ 8U1
72 = )1 = 20) <63€2(1 —v+ ”axl>

= (Om | Ouz
P70+ ) \Oxg | 021 )

Let us evaluate the partial derivatives of the components of the stress
tensor with respect to the space variables

0011 _ E <82u1 (1—1)+v 0%uy )
0xy (14+v)(1-2v) \ 922 0x10x2
60'22 E 82162 82U1
Ozs  (L+v)(1-2v) < ox3 (1=v)+ y8x18x2>
do1o E 0%uy 0%uy

or1  2(1+v) (89318332 aﬁ)

0012 FE 0%uy 0%uy

Oxo - 2(1+v) < Ox3 8x18x2>

Inserting these derivatives in the equilibrium equations given by (B7.20)

60'11 80’12
Tm 81‘2
Ooga 0012
67.12 81’1
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one finds successively

a0'11 a012 o
8:131 8:@ + fl =0

E (82u1 (1) +v 9%us >
(14+v)(1—-2v) \ 022 O0x10x2
E 82u1 82u2
T30 < 022 axla@) Th=0
2 0%uy 0%us 9%y 0%us 1
1-—2v <8m%(1 -+ V@azlaxg) + 8:5% + 0x10x9 + ];: =0
2(1 — v) 0%uy v Q%uy 0%y 0%us f
1—2v 3:E% 1 — 2v 0x10%2 833% 0x10x9 ;
2(1 — I/) 82U1 1 62’11,2 82U1 f1
1—-2v 927  1—2v0x10x9 + 03 m
1 0%u  0%*uy 1 9%us Pur i
1-—2v 8m% 81‘% + 1 —2v 0z10x9 8$% ;

Puy 0%y 1 0 (Our Ous
“(axg+axg>+1_2yam<axl+ax2>+fl—°

82u1 82U1 8 8711 aUQ
— + — A — — 4+ == =0.
M(@m% + 8x%)+( +M)8x1 <8m1+8:c2>+f1

=0

=0

=0

A similar reasoning leads to (B7.313).

Solution 7.2
With (B7.41), the equations (B7.43) are written as

FE 8u1 T V8U2
on=——=|s—+v—

L 0z 0o

FE 8u2 T l/aul

o =——|75—+Vv—

27102 \ 0wy 0z

_ B (0u 0w
12 = 2(1 + l/) 0x9 ox1 '
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Let us evaluate the partial derivatives of the components of the stress
tensor with respect to the space variables

8011 . FE 82’LL1 8211/2
or; 1—12 ( Ox? + V8x18:c2>
80'22 E 82U2

Oza 1—12 ( 03 8:618372)

60'12 o E 82u1 UQ
or;  2(1+4v) <8x18m2 Ox? >
6012 . ) 82U1

Ors  2(14v) < Ox3 836181‘2)

The equilibrium equations are given by (B7.20)

80'11 8012 _
81‘1 8x + fl 0
doyy Doy B
axg 8371 + f2 =0

Thus the first equilibrium equation becomes successively

B (Pu,, Ou B (P, Pua
1—v2 \ 922 0x10x9 (1 ) \ 022 Ox10x te
2 2 2 2
2 8U1+V8’u,2 8u1 8uQ +ﬁ:0
1—v 81’% 8.731(91?2 81}% (9:61(91’2
2 9%y 2 0%us 9%uy 9%us n ﬁ _0

1—v E)a:% 1—v0x10x9 895% 0x10x2
2 %u;  0*uy  OPup Pup 14+v JPuy ﬁ

— — 0
1—v Om% 838% 8.%% ax% 1—v0ri0re
Pu; 0wy 1+ v d%u, 1+v 0%u
=0
<8$% + ax% Ml—l/ 830% ul—v8x18x2+f1

<82u1 82’&1) E 0 <8u1 8u2
2(

02 | 022 1) o am+ax2>+fl_0

A similar reasoning leads to (B7.315).

Solution 7.3

The Navier equations (B7.6) are written as

(A + p)ug ki + puij; + fi =0. (7.1)
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With the u; expression given by (B7.315), one has successively

A+ 2u
HUG55 = mgi,mmjj — n,nijj
as well as
A+ pw)up = AT 2M9k,mm - mgn,nk -

Taking twice the derivative of this last relation, one obtains

A+2 A+
A+ pw)ugpi = Mgk,mmki — T'ugn,nkm‘ =
A+2pu A+ p
= 9k kmmi — 9k, kmmi
= Gk,kmmi -

Inserting these expressions in the Navier equation (7.1), one has

A+ 2p

4
9k, kmmi A+ [

Ji;mmjj — 9n,nijj
A+ 2p

— P "
9k, kmmi A+ 1

9immjj — Gk,kmmi

A+ 2p
A+
=0

9i,mmyjj

Solution 7.4
1) We use identity (B1.238)

VxVxu=V(V-u)—Vu

that gives
V(V-u)=Vu+VxVxu.

We introduce this last relation in (B7.7) that becomes
puV2u+ (A +p) (VPu+VxVxu)=0.
Therefore

A +2)V?u4+ A+ )V XV xu=0.



Introduction to Solid Mechanics 69

2) From relation (B7.7), one writes

P 2 ) =
eVt V(Vew) =0,

The elasticity constants are linked together. By (B6.109), 2v =
A/(A+ p). Thus p/(A+ p) =1 —2v and then the result.

3) We use relation (B1.238) in the Navier equation (B7.7)
p(V(V-u) = VXV xu)+ A+ p)V(V-u)=0
from which we get easily
A+20)V(V-u) —uV XV xu=0.

Solution 7.5

Taking the divergence of the relation

0*u

A+ 2u)Vu = P o (B7.209)

one obtains

2 .
(\ + 2p) div V2 = paggu)
Afterwards we use (B1.191) to obtain
2 .
(O + 20) V(div u) = pa%htzu)

Solution 7.6
With div w = €;; = 0, the motion equations (B7.202) become

0%u

Viu=p—0 .
HY U= Poe

We take the curl of this last relation

0*u
HVX (VZU):pVXw .

Using (B1.237), one finds

0?(V x u)

2 —

(B7.319)
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Solution 7.7

The function ® is a solution of the problem if it satisfies the bihar-
monic equation (B7.38). To this end, let us first calculate its Laplacian.
One finds (cf. (BA.27))

2 10 1 0
20 _ Y .t
v®_<8r2+rar+7“2802>q)
1070
2 962

= " sin20 .
7’2 S1n

Afterwards, one evaluates the double Laplacian. One has

22 10 1 02 AB
4 _ - - Y - Y s
Ve = <8r2+1"3r+7‘2802) ( r2 Sm29>
24B . 18B 1 4B

= — = sm29—|—;r—351n29+r—2ﬁ-2-25in29

=0.
The stress components are given by the relations (BA.28)-(BA.30)
109  19°0 4B

= o o = ¥
e
700 = 12 T
102 10°0 1
o9 = 0 e _ (A+2Bcos20) .

200  rdfdr 12

The equilibrium of the corner is given by the relation
o
/ (orgrdd)r — M =0
—

and thus N
/ (A+2Bcos20)dd = M . (7.2)

—
To the condition (7.2), we must add the one expressing that the corner
edges are free and not subjected to any shear stress. One writes
o000 =a)=A+2Bcos2a=0. (7.3)
We thus have A = —2B cos2a. Replacing A by this value in (7.2) and
integrating, we find

B M
~ 2sin2a — 4dacos 2
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The radial stress becomes

4M sin 260 2C . 99
— = —"_sin
2sin 2a — daccos 2 12 r2

Orr =

with
M

sin 2a0 — 2accos 2

The shear stress is

M cos2a — cos 26
r? sin 2o — 2aecos 2o

Org =

Solution 7.8

(a) One verifies easily that the stress function (B7.322) satisfies the
biharmonic equation. From the expressions in the appendix B(A.28)-
B(A.30), one obtains

To find the C' constant, one considers the equilibrium of the slab at a
distance r from the origin. Thus

@ 2cosf

rcosfdf = 2C cos? 0 db .

—Q

P=C

—Q

r
Therefore

P =2C [Z + isinQQ] = C[2a + sin 2q]

Thus, one finds
P

- 2c + sin 2

The stress takes the form

2P cosf
r(2a + sin 2a)

Opr =

(b) Setting o = 7/2, one obtains the stresses for a plate subject to a

linear load
2P cosb
Opp = — s ogg = 09 =0 .
T T

Let us note that the difference of this result with (B7.163) comes from
the fact that the directions of o, are opposite in both problems.






CHAPITRE 8

Introduction to Newtonian Fluid

Mechanics

Solution 8.1

The Navier-Stokes equations are treated in section B8.4. The mass
conservation law is given by (B3.44) or (B8.9)

dp  Opv;
a—k oz, =0.

The momentum conservation equation (B3.96) gives

601']' DU,‘
bi = p—r' .
a.rj +P ! p Dt

The Newtonian viscous fluid constitutive equation is written as (B6.14)
0ij = —D 5@‘ + A dik 5@‘ + 2u dij .
Inserting (B6.14) in (B3.96), one obtains

Du; 0 0
L T (b Adprdis) + —— (2ud,; bi
P Dy axj(pg+ ke JHaxj(“ i)+ p

and thus the relation (B8.10)

Du; 0 0
Vi _ p+

0
"Dt = ow axi(/\dkk) + ~—(2udi;) + pb; |

8xj

as
0 0
— (—p+ Adgg) 6ij = (—p + Mdgk) -

81,‘]' €Ty
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The energy equation (B8.7), taking the Fourier conduction law into
account (B6.123), becomes

DT P Dp

PCo > Dt + A (trd)* +2ud : d + div(k VT) +r
If the coefficients A and p are constant, the momentum equation gives

D’UZ‘ 8])

0 9  Ovj

If the flow is incompressible, it results that div v = trd = 0 and the

previous equation simplifies itself to

Dv;  0Op
Dt = o

i + pb; .

Solution 8.2

The solutions obtained in section B8.7.1, i.e. (B8.51) and (B8.63),
for the plane Couette and Poiseuille flows, respectively, result from linear
differential equations. As the non-linear terms of the Navier-Stokes equa-
tions do not intervene in this problem, one invokes the principle of linear
superposition and the solution of the combined plane Couette-Poiseuille
flow is written as

h? dP xo 9 Uzxy
=t T 22y 2
2udxy h h h
The shear stress is
dvy h dP 1 219 wU

¥ A A A

Finally, the flow rate is

h 3
W AP Uh
Q_/O ondrr = g0 e T

Solution 8.3

From the geometrical point of view, this flow occurs between two
concentric cylinders as in the circular Couette flow. The inner cylinder
of radius R; and the outer one of radius Ry have a rate of angular
rotation wy and wo, respectively. The viscous fluid between the cylinders
is also subject to an axial pressure gradient. As the flow is in steady
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state (0/0t = 0) and presents a symmetry of revolution (9/00 = 0), the
velocity profile depends only on r. One has

v = vp(r), vg = vg(r), v, = v (r), p=p(r,z) . (8.1)
As the fluid sticks to the wall, the boundary conditions are

UT<R1) = UT(RQ) = 0, 'Ug(Rl) = wlRl, U@(Rg) = (AJQRQ,
’UZ(Rl) = UZ(R2> =0. (8.2)

By a similar reasoning as the one for the circular Couette flow, it is
possible to show that the component v, vanishes everywhere (cf. (B8.98)
and (B8.99)). The Navier-Stokes equations in cylindrical coordinates
(A.32)-(A.34) become

10p vg
por 1 (83)
10 8’09 Ug _
ror <T8T)_T =90, (84)
op 0%v, 10w, B
_az+“<6r2 ﬂar) - (85)

The Couette solution (B8.102) remains valid

2 _ 2 _ 2 2
vp(r) = Ar + B = wplty = wilty r— (wa — wi) Ry Ry 1

r R3 — R? R3 — R? r

(8.6)
Relation (8.3) gives

r 2
p=p / gt v f(2) (8.7)
R1 r

where vy is the Couette solution and f(z) is an undetermined function
of z. Introducing (8.7) in (8.5), one finds

df  1d [ dv.\

As f does depend only on z and v, is only function of r, one has

ﬁ_ li dv, =_C
dz_Mrdr Tdr - ’
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where C' is a constant. Here we will refer to the development described
in pages B295 and B296 for the integration of v,. The solutions are
written by taking the boundary conditions (8.2) into account

f(z) = -Cz+ D, (8.9)
C o, R3—R3 RiIlnRy — R3In Ry

vy(r) = — |—r° + Inr + .(8.10

(r) 4p [ In(Ry/R1) In(R2/Ry) (8:10)

The factor D is a constant. The pressure field is given by

r o2
p(r,z) = p/ U—‘?dr' —Cz+D. (8.11)
R T

Pressure is known up to a constant D, that will set the reference pres-
sure; the pressure gradient —C' acts in the direction of the axis and
finally, the first term of the right hand side of (8.11) balances the cen-
trifugal force of the rotating fluid. Note that the axial velocity does not
depend on the angular velocity of the cylinders, while the azimuthal
velocity vy is independent of the pressure gradient.

Solution 8.4

We will refer to the spherical coordinates (r, 6, ¢) as in figure B8.20.
The rotation axis of the sphere with the angular velocity 2 = Qe,, is
axis x3. As a consequence of the problem’s symmetries, the velocity field
has only a single component such that

v =v,(r,0)e, . (8.12)
We solve the Stokes equations with the boundary conditions

v=0 in r=o00 (8.13)
v, = QRsinf in r=~R. (8.14)

The form of the boundary conditions (8.14) suggest to search the solution
under the form
v = QRf(r)singd , p=ps . (8.15)

One verifies that the mass conservation equation (BB.30) is trivially
verified by (8.15). The pressure gradient does not intervene in (BB.33)
because of axial symmetry (0/0¢ = 0). One has

2f  2f

v
Avy, — —2o— =QRsinf | f"+ = -2 ] =0. 1
Ve T 2% ftsin (f * roor? > (8.16)
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The f solution is written as f(r) = 31> _ C,r™. This gives
C:
flr)=Crr+ -3 . (8.17)

The boundary conditions (8.13) and (8.14) impose C1 = 0 and Cy = R?,
respectively. The velocity field around the rotating sphere is

3
Vp = QT—Qstew .

Solution 8.5

The boundary conditions are

Ucp = Q1R1 sinf in r= R1 (818)
vy, = QoRysing in r=Ry. (8.19)

The considerations of the previous exercise remain valid for the velocity
profile search under the form (8.15)

v = f(r)sin® , p=ps . (8.20)

We will note that we do not use anymore the factor QR, as now we have
two radii and two angular velocities to take care of. The equation to
solve is thus

/
Avy, — ”“”2 :sin9<f"+2f2f>20, (8.21)

r2sin® 0 72

whose solution is written as
C
f(r)=Cir + 75 : (8.22)
The imposition of the boundary conditions (8.18) and (8.19) yields

. QQR% — QlR‘% Q1 QQ

C Cy =
'"URI-R O T RI-RS

—— - RIRS . (8.23)

Solution 8.6

We consider the streamline SA from the free surface S toward the
orifice Or of the enclosure (cf. figure 8.1) and we apply to it the Bernoulli
theorem (B8.223) to obtain

2
ps + S+st—pA+7+pXA
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Figure 8.1 Enclosure with free surface and orifice.

By (B8.193), one obtains

o 9x
g_ 81’37

and thus x = grsz+ C. At the free surface the pressure is that of ambiant
air; it is the same situation at the orifice. Therefore ps = pa = pair. If
we set the origin of the x3 axis at the level of the orifice, the contribution
of px is equal to C. For the sake of simplicity, we set C' = 0 , while at
the free surface x3 = h, pxs = pgh. On the free surface, the velocity vg
is zero (this is especially true when the enclosure is large) and setting
v4 = v one has

pgh = gvz . (8.24)

This gives the sought relation, which is known as Torricelli formula.

Solution 8.7

From the Navier-Stokes equations (B8.17) without body forces and
assuming a velocity field of the form

v = U1(l‘2,l‘3), Vg = V3 = 0 s (8.25)

the only relation that gives a non zero contribution is the one related to
the v velocity component. One finds

8p 621}1 (92’01
0= —— 8.26
0x1 +'u<8$% + 8x§ ’ ( )
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or

1 dp vy 0%y
- = 4+ 2 _C 8.27
pory O} * 03 ’ (8:27)

as p = p(z1) and v1 = vi(x2, x3).

On the elliptical wall v;1 = 0 and thus A+ B =0, or B = —A. We
calculate the second order derivatives of the velocity that are injected

in (8.27). One has
1 1 1 Op
Al s+ 5 )| =—5— =
<a2 * b2> w0y ¢

From which we get A and B = —A. One obtains a generic solution, that
will become particular for a given pressure gradient.

Solution 8.8

r
OOV RN NN N NN N NN NN AN NN AN NN NN AN NN NN AN AN
=

/

;}//////////////////////////////////////

Figure 8.2 Flow between two concentric cylinders, one fixed
and the other moving with the velocity U.

We work in cylindrical coordinates with the z axis in the direction
of the axes of both cylinders (cf. figure 8.2). The only non zero velocity
component is clearly v,. Moreover v, = v, ().

The flow is kinematically forced by the displacement of the inner
cylinder. No pressure gradient is involved in the fluid motion.

Equation (A.34) gives

1d dv,
el =0. 2
rdr <T dr ) 0 (8:28)

Integrating (8.28), one finds

v,=Cilnr+Csy . (8.29)
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The boundary conditions are

Imposing (8.30) and (8.31) to (8.29), one obtains the velocity field

U T

Vy, = ——In — .
Ry
In Vo Ry

The only non zero component of the stress tensor is o,, equal to

Oov, Ov, U 1
rz = = s . 832
o H ( ar + 92 > #ln% r ( )

The friction force per unit length that acts on the moving cylinder is
given by the integral

! U
/ Orzlr=m127R1dz = 27p R -
0 1n E



